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ABSTRACT

Virtual Private Networks (VPNs) are designed to use the Transmission Control Protocol
(TCP) or User Datagram Protocol (UDP) to establish secure communication tunnels over
public Internet. Multipath TCP (MPTCP) extends TCP to allow data to be delivered over
multiple network paths simultaneously. This thesis first builds a testbed and investigates
the potential of using MPTCP tunnels to increase the goodput of VPN communications and
support seamless mobility. Based on the empirical results and an analysis of the MPTCP
design in Linux kernels, we further introduce a full-multipath kernel, implementing a basic
Multipath UDP (MPUDP) protocol into an existing Linux MPTCP kernel. We demonstrate
the MPUDP protocol provides performance improvements over single path UDP tunnels
and in some cases MPTCP tunnels. The MPUDP kernel should be further developed to
include more efficient scheduling algorithms and path managers to allow better performance
and mobility benefits seen with MPTCP.
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CHAPTER 1:
Introduction

The use of Virtual Private Networks (VPNs) has become common practice in many orga-
nizations. This need for VPNs stems from not only the desire to connect remote offices
and personnel to local infrastructure without the use of dedicated physical connections, but
also a growing need for secure communications to mitigate cyber threats. VPNs are easily
built on top of the physical network and can be utilized in various configurations to achieve
confidentiality and integrity of communications.

Increased security and the desire to bypass physical connections results in additional over-
head in the transport layer. VPNs introduce this additional overhead through the use of
secure tunnels [1]. The level of security desired for the tunnel will drive the level of en-
cryption needed, which in turn will affect the amount of overhead added. These tunnels
are built using either the User Datagram Protocol (UDP) or Transmission Control Proto-
col (TCP). UDP is the default protocol used by many VPNs since it provides minimal
overhead, but in some instances there may be a need for increased reliability provided by
a TCP connection. When a TCP tunnel is used, there exists the potential of performance
degradation. The majority of Internet traffic uses TCP so it is safe to assume the traffic
flowing through the established VPN tunnel will be TCP traffic. This layering of a TCP
tunnel with a TCP connection can lead to drops in performance due to two layers of conges-
tion control acting on the connection. TCP congestion control algorithms are designed to
achieve maximal performance by controlling the amount of traffic on a connection. When
a packet is lost in transmission or a triple-duplicate ACK is received, TCP relates this to a
congested connection and will perform a back-off, resulting in smaller packets being sent.
When a TCP connection is established within a TCP tunnel, each layer of TCP establishes
Round Trip Time (RTT) timers and sets a Retransmission Timeout (RTO) parameter to
aid in determining if packets are lost. Olaf Titz [2] describes a scenario where the outer
TCP layer has a shorter RTO than the inner layer, which results in unnecessary timeouts
and retransmissions. To counter the perceived congestion caused by these timeouts and
retransmissions, smaller packets will be transmitted, which in turn results in a performance
drop.
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In "Understanding TCP over TCP: Effects of TCP Tunneling on End-to-End Throughput
and Latency," the authors discuss TCP parameters that may be specified to reduce TCP over
TCP complications [3]. One TCP parameter that has become standard in Linux is the TCP
Selective Acknowledgement (SACK) option. This option is designed to allow the client to
send an ACK message for specific packets resulting in only needing to retransmit missing
packets instead of multiple packets in which some may not have been missing. Honda et al.
were able to show that through the use of the TCP SACK option on the tunnel TCP flow,
the goodput experienced increased [3]. Another adjusted parameter that can affect TCP
connections is the buffer size of the socket being used. By setting a small buffer size, the
incoming TCP packets will need to be processed quickly or the buffer will overflow and the
packets will be dropped. Having an excessively large buffer could result in packets sitting
in the buffer longer than the RTO value set on the link. This would result in unnecessary
retransmissions due to a perceived loss that was not present. Honda et al. determined
that setting socket buffer sizes of both the end-to-end tunnels and the TCP tunnel to the
bandwidth-delay product of the link also produced favorable results [3]. Despite these
improvements, the effects of TCP over TCP are still present and provide a hindrance to
using TCP with VPNs.

1.1 Problem Statement
The additional overhead introduced when using a VPN often results in decreased perfor-
mance depending on RTTs and loss rates across the network. To enhance traditional TCP
connections, companies such as Apple have started using Multipath Transmission Control
Protocol (MPTCP) on iOS devices [4]. Additionally, MPTCP is supported in the latest
Linux distributions [5]. MPTCP is an enhancement built into the operating system kernel
to allow hosts to use multiple sockets in a TCP session. The number of sockets utilized is a
factor of the number of interfaces available to the host as well as the path manager specifi-
cations set by the host. Multipath protocols such as MPTCP will allow hosts with multiple
interfaces to multiplex traffic and aggregate bandwidth over the additional interfaces. The
use of multipath protocols within VPNs has the potential to overcome the decreased perfor-
mance seen when using standard protocols, thus removing any hindrance in using a VPN
to provide secure communications.
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1.2 Research Questions
Minimal studies have been conducted regarding the use of multipath transport protocols
with VPNs. Additionally, the use of Multipath User Datagram Protocol (MPUDP) within a
VPN has yet to be researched to the best of our knowledge. Specifically, this research aims
to answer the following question:

• TCP-encapsulated-in-TCP is likely to cause a slow down of data transfer due to
redundant applications of congestion control. Will using MPUDP in a VPN improve
data transfer rates?

Through our study of VPNs and multipath protocols, we look to answer the following
additional research questions:

• How can we integrate MPUDP into an existing VPN with a minimum amount of
modifications to the existing configuration?

• Does a plug-and-play solution exist or will it be necessary to modify the VPN frame-
work to support it?

• How does the use of a VPN impact the performance of MPTCP? MPTCP enhances
a standard TCP network, but how will MPTCP behave within a VPN?

1.3 Thesis Organization
The organization of this thesis is as follows. Chapter 2 begins by discussing how VPNs are
used and the different layers they may be implemented in. Then we discuss a specific VPN,
OpenVPN, and how Secure Sockets Layer (SSL)/Transport Layer Security (TLS) is used
to accomplish ease of implementation and secure communications. Afterwards, we discuss
MPTCP in detail to include how a connection is established, path managers available,
scheduler used, and the congestion control algorithms available. Lastly, we discuss related
work researching the use of MPTCP and VPN in a gateway-to-gateway environment, using
MPTCP to permit mobility, and how MPUDP is being used to improve Secure Shell (SSH)
connections. Chapter 3 investigates the implementation of MPTCP in a VPN. Specific
emphasis is placed on performance differences with symmetric/asymmetric link conditions
and the effect of other link characteristics such as propagation latency and packet loss rate.
After performance evaluations are completed, we discuss potential benefits in regards to

3



mobility when using MPTCP in a VPN. Chapter 4 details the implementation of MPUDP
into the MPTCP Linux kernel. A proof of concept evaluation is then performed using
MPUDP in a VPN. Lastly, in Chapter 5 we discuss our conclusions and the potential for
future work.
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CHAPTER 2:
Background

This chapter provides the necessary background information pertaining to VPNs and
MPTCP. We begin by providing an overview of how VPNs are commonly used and
methods of implementing them. We then discuss one particular VPN, OpenVPN, and
how it operates to include providing secure communications and configuration parameters.
Once the reader obtains a high-level understanding of OpenVPN, we discuss the MPTCP
protocol to include modifications employed to enable behavior similar to the well known
TCP protocol, handshake process, available path managers, packet schedulers, the different
congestion control algorithms, and how MPTCP interacts with OpenVPN. We provide a
brief overview on how to install and use MPTCP as well. Lastly, we introduce related
work to include the MPTCP Binder implementation, how MPTCP affects mobility, and a
MPUDP application layer implementation.

2.1 VPNs
VPNs are established for various reasons. It might be needed to enable a client to connect to
his corporate offices using a hotel Wi-Fi connection while traveling for business. Maybe a
small business is branching out to a new geographical location and needs to maintain secure
communications between the two locations. These are just two of the many scenarios that
may warrant setting up a VPN. There are three common configurations for a VPN:

• gateway to gateway
• host to gateway
• host to host

The gateway-to-gateway model connects one network gateway to another network gateway
without the need for a physical connection. This configuration may be used to connect
remote offices of a corporation to the local offices and maintain secure communications
as if the remote offices were part of the local area network. The host-to-gateway model
is very similar. Instead of using a network gateway router, the host machine becomes the
gateway to establish the connection with the desired VPN server’s gateway. The final and
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least employed model utilizes each host machine as the network gateway and establishes
a secure connection between the hosts. This method is not very common due to easier
methods, such as SSH, to accomplish the same goal. The focus of this thesis is the host to
gateway model, but the concepts can be easily abstracted to the alternate configurations.

2.1.1 Network Layer Implementation
There exist several different methods of implementing a VPN. VPNs are built within the
existing 7-Layer Open Systems Interconnection (OSI) model and can be implemented in the
data link (2), network (3) , or transport (4) layers [1]. Layer 2 Tunneling Protocol (L2TP)
and Point to Point Tunneling Protocol (PPTP) VPNs exist at the data link layer. PPTP
VPNs are incorporated in base operating systems allowing for ease of implementation, but
these protocols have known security vulnerabilities. The L2TP alone does not provide
encryption or confidentiality and is typically used with another protocol, such as Internet
Protocol Security (IPSec), to provide a secure tunnel [1]. IPSec is implemented at the
network layer and provides confidentiality, integrity, and authentication. IPSec VPNs are
most commonly used in the gateway-to-gateway model. Additionally, IPSec VPNs are
quite complex and require integration into the operating system kernel. This can lead to
problems with interoperability since each system must be configured correctly to support
the VPN [1]. Transport layer VPNs may be established using the application layer. One
such VPN could be made using an SSH tunnel. An SSH tunnel is quick to establish and
can be useful for conducting tasks via the command line interface, but its operation at a
higher OSI layer leads to limited uses. This thesis will focus on using OpenVPN, which
operates in either the data link layer or network layer [1]. OpenVPN is a well-known VPN
and should allow the implementation of multipath protocols without the need for changes
to the VPN architecture.

2.1.2 OpenVPN
OpenVPN is a well known open sourced VPN. It is a feature-rich data link or network
layer VPN that utilizes SSL/TLS for encryption [1]. Unlike the complex network layer
IPSec VPN, OpenVPN is easy to install and customize/alter to fit the configuration needed.
Since its initial release in 2001, OpenVPN has gone through many updates in order to
provide more secure communications, optimize performance, and add additional features.
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OpenVPN utilizes the client/server model and can support multiple clients via the same
server operating on the same port [1]. Early versions of OpenVPN set default send and
receive buffers of 64K bytes. This setting caused performance degradations, which resulted
in version 2.3.9 removing the default and allowing the host operating system to set these
values on tunnel creation. Depending on the host operating system being used, OpenVPN
may install a stable version prior to 2.3.9, thus it is recommended to update to the latest
version available. OpenVPN is able to use a variety of encryption standards, such as
Blowfish and AES. Users should take note that the choice of certain encryption algorithms
can add additional overhead above the defaults and result in slower tunnels. To accomplish
this encryption, OpenVPN uses SSL/TLS. SSL/TLS has been utilized since the 1990s, is
a well known method of providing secure communications over a public network, and is
most commonly used for HTTPS connections. Thus its use in OpenVPN lends to the ease
of employment and security.

2.1.3 How OpenVPN Establishes Connections
This section goes into detail on how SSL/TLS is used in OpenVPN to create a secure tunnel
connection. An OpenVPN connection begins with a handshake between the VPN client
and VPN server. An overview of this process is provided in Figure 2.1.

Client Server
Hello

Hello, Cert

Cert, Key Exchange
Change Cipher, HMAC

Change Cipher
HMAC

Encry
pted

Figure 2.1: Simplified TLS Handshake

The connection begins with the client sending a hello message containing a list of crypto-
graphic algorithms it can support as well as a nonce to prevent replay attacks. The server
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will then send a hello message containing the symmetric algorithm, public key algorithm,
and Message Authentication Code (MAC) algorithm to be used. Additionally, the server
will provide a digital certificate along with a nonce and request the client’s digital certificate.
After the client receives the hellomessage, the client will verify the digital certificate of the
server, retrieve the server’s public key and generate a pre-master secret. Once completed,
the client will send the generated secret to the server. At this point the client and server will
compute the master secret and generate two encryption and two MAC keys from the secret.
From this point on, all further traffic for this connection will be encrypted using the keys.
The client will then send a MAC of all the handshake messages, which will be followed by
the server doing the same. This final step is used to prevent a man in the middle attack. If the
MACs do not match, the connection will be terminated and the handshake will be required
to be performed again. After completion of the SSL/TLS handshake, the authentication of
the client and encryption parameters have been established for the OpenVPN connection.

2.1.4 OpenVPN Configuration Parameters
For each endpoint of the VPN, configuration files are used to store several parameters for
OpenVPN setup. Several of these configuration parameters will be covered in this section.
Parameters present in both client and server configurations include the certificates necessary
to conduct the initial handshake specified in Section 2.1.3. The server will specify the IP
range used for the virtual network, which may be outside the IP range of the local area
network of the server. The class A private address space is often used, such as 10.8.0.0/24.
The server must also specify the parameters for the keep-alive settings, if being utilized.
Keep-alive will send a ping at set intervals and wait a specified amount of time for a
response. If no response is received, the tunnel is perceived to be down and the client
will need to establish the connection again. The client is often configured to re-establish
connections automatically, thus alleviating the need for interaction with the user. The server
may also specify the use of a persistent tunnel. When this parameter is set, the server will
not tear down the tunnel if a connection restart message is received. This is useful for
intermittent links to ensure client VPN addresses are not unnecessarily changed. The last
set of parameters often specified by the server is the use of push messages to disable split
tunneling and ensure all IP traffic is sent through the tunnel.
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2.1.5 OpenVPN Traffic

After the VPN has been established and the desired configuration parameters have been
passed, the user may begin using the VPN for various types of traffic to include web
traffic. Figure 2.2 illustrates a general timing diagram of traffic between a VPN client and
a web server. Each packet in the timing diagram is also illustrated to give a view of the
encapsulation and decapsulation throughout the IP, transportation, and application layers.

VPN
Client

VPN
Server

Web
Server

P1*

P1

P2

P2*

IPc

P1*
IPs Transport P1

IPtunc

P1
IPweb TCP DAT A

IPweb

P2
IPtunc TCP DAT A

IPs

P2*
IPc Transport P2

Figure 2.2: Sample VPN Traffic

Packet P1* is the outer packet carrying P1 as a payload and may use UDP or TCP as the
transport protocol. In fact, we will even use MPTCP or MPUDP as the transport protocol
for P1*. After P1* arrives at the VPN server, the packet is decrypted and P1 is analyzed
to determine its final destination. Since P1 is not destined for the VPN server, the packet
is then forwarded to its destination with a source address of the VPN client. The reverse
process for packet P2 is similar.
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2.2 MPTCP
MPTCP is an emerging technology that is still under-utilized in current networking designs.
As such, MPTCP was built to be backwards compatible with TCP in order for it to have the
best chances possible to be adopted into practice [6]. To achieve backward compatibility as
well as application independence, Figure 2.3 illustrates modifications made to the transport
protocol stack.

Application

MPTCP

TCPsub1 TCPsub2
........ TCPsubn

IP1 IP2 ........ IPn

Figure 2.3: MPTCP Protocol Stack

Additional changes were also made to the TCP header-options field to signal the use of
MPTCP. Figure 2.4 provides a Wireshark view of the option utilized to enable MPTCP
communications, specifically a MP_JOIN connection. A Kind field value of 30 has been
designated by the Internet Assigned Numbers Authority to indicate the use of MPTCP. The
subtype field varies depending on the purpose of the MPTCP message, such as: initiating
the connection, joining a connection, providing additional addresses, and data sequence
mapping [6].

Figure 2.4: MPTCP Option to TCP Header
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This section details the three-way handshake to include establishing additional connections
called subflows, path managers, packet schedulers, and congestion control algorithms.
OpenVPN interaction with MPTCP will also be discussed.

2.2.1 Connection Process
The initial MPTCP handshake is designed to be like the traditional TCP handshake. The
client will initiate a handshake with the server by using the MP_CAPABLE subtype in the
MPTCPoption section. Alongwith the subtype being set, the client will also include a 64-bit
key that will be used to generate a 32-bit token for use in authenticating all communications
after the handshake is completed. Upon receiving the initial handshake message, the server
will perform one of two actions. If the server is not MPTCP capable, the handshake will
seamlessly fall back to a single path TCP connection. If the server is MPTCP capable, then
the server will send a SYN-ACK message along with a 64-bit key. The client then finishes
the connection by replying with an ACK message along with both the client and server’s
keys.

Once the handshake has been completed, additional subflows are created using two different
methods. The primary method for establishing additional subflows is through theMP_JOIN
option [6]. If the client is multi-homed or wishes to establish additional socket pairs on a
single interface, the client will conduct another handshake using the MP_JOIN option in
lieu of the MP_CAPABLE option. When establishing this new connection, the token from
the initial handshake is used along with nonces and HMAC algorithms to prevent security
breaches. Figure 2.5 illustrates the process of initial handshake to additional subflow
generation using the MP_JOIN option.

Another method of creating additional subflows is through the use of the ADD_ADDR
option [6]. This option, sent by the client or server, advertises additional interfaces available
for establishing subflow connections, to include virtual IP addresses. Once the client or
server learns of the additional IP addresses, additional subflows will be established using
the MP_JOIN process described earlier.

11



Client Server

SY NMP_C APABLE

SY N/ACKMP_C APABLE

Kc

ACK

Ks

Kc, Ks

SY NMP_JOI N

SY N/ACKMP_JOI N

Tokens

ACKMP_JOI N

H M ACs

ACK

H M ACc

Figure 2.5: MPTCP Initial Connection and Subsequent Join Request

2.2.2 Path Managers
The number of subflows created is determined by the path manager being used by the client.
This thesis focuses on two of the existing path managers, ndiffports and fullmesh.

Ndiffports
The ndiffports path manager was developed to "exploit the equal costs multiple paths that
are available in a datacenter" [7]. Additionally, ndiffports allows clients with only one
interface to be able to utilize MPTCP. Once an initial connection is established, ndiffports
will create multiple subflows using the same source and destination IP addresses through
the use of different source port numbers. The number of socket pairs to be created is a
tunable parameter set by the client. Figure 2.6 provides a simplified illustration of this path
manager.

In the paper "Improving Datacenter Performance and Robustness with Multipath TCP," the
authors discuss how ndiffports may be implemented in data centers to take advantage of
equal cost paths present within the data center [8]. Outside of data center usage, ndiffports is
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Figure 2.6: Ndiffports Using Three Subflows

not recommended for practical use and should only be used as an example path manager [7].
Contrary to this recommendation, we believe the use of ndiffports in a VPN tunnel may
mitigate the TCP over TCP effects and yield performance benefits.

Fullmesh
The fullmesh path manager is designed to create all possible connections between the client
and the server by attempting to connect each interface of the client to each interface of the
server [7]. Figure 2.7 provides a simplified scenario of a MPTCP client with Wi-Fi and
cellular interfaces connected to a MPTCP server with or without the same interfaces.

MPTCP Client MPTCP Server

Wi-Fi

LTE

Figure 2.7: Fullmesh Using a Wi-Fi and Cellular Connection

The client is able to tune this path manager to specify the number of subflows to be created
on each set of IP addresses, thus combining ndiffports and fullmesh if desired. It should
be noted that this path manager will also attempt to use virtual IP addresses to establish
additional connections. Although this may be desirable, potential drawbacks exist if not
used properly. For instance, when using inside of a VPN, the virtual VPN IP addresses of
the client and server will initiate connections to the real IP addresses of the client and server.
This may cause routing problems due to the VPN having routes not traditionally used.
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2.2.3 Data Sequencing
The use of multiple subflows brings about the need to sequence the data received so that
it may be reassembled in the correct order and delivered to the application layer. To
accomplish this, MPTCP uses the Data Sequence Signal (DSS) option. Sequence numbers
of each subflow are relative to that specific subflow and thus are not useful in determining
the proper sequence of the overall flow of data. The DSS option is a 64-bit value used
to map subflow sequence numbers to master sequence level or master flow [6]. Besides
ensuring proper integration of subflows into the correct order for deliver, the DSS option
is also used for acknowledging delivery of packets and signaling the closing of a MPTCP
connection [6]. Without the use of this option, MPTCP would not be able to function
independently and would cause problems with applications using TCP.

2.2.4 Packet Schedulers
The use of MPTCP also requires a specialized packet scheduler to be used to maximize per-
formance with multiple subflows. The default scheduler, which prioritizes subflows based
on RTT, is the best-known option and is the only recommended scheduler for practical
use [5]. Another available packet scheduler is the round-robin scheduler. This scheduler
sends packets over each subflow in a round-robin fashion in an attempt to balance traffic
across subflows. The round-robin scheduler is only useful for academic research and not
recommended for practical use [5]. MPTCP v0.91 introduced a new packet scheduler,
known as redundant. This scheduler sends packets in a redundant manner across available
subflows in order to minimize the latency experienced while sacrificing additional band-
width that may be available [5]. This thesis utilized the default packet scheduler in order to
focus on a practical use of MPTCP within a VPN.

2.2.5 Congestion Control Algorithms
TCP congestion control algorithms aim to achieve the maximum throughput possible on a
connection without putting too much traffic on the link as to adversely affect link perfor-
mance. Well-known single path TCP congestion control algorithms include TCP Reno and
Cubic. TCP Reno is an ACK based algorithm in that it increases the congestion window
based on receipt of ACK messages. In the event of a triple-duplicate ACK, the congestion
window is reduced by one half and the congestion avoidance phase begins again. In the
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event of a timeout, more severe restrictions are applied. Instead of dropping by half of the
current value, the congestion window is set to 1 Maximum Segment Size (MSS) and the
slow start phase begins. Conversely, TCP Cubic does not use the receipt of ACK messages
to adjust the congestion window. Cubic will quickly increase the congestion window to the
last known threshold before a congestion event occurred. Once a stabilization phase occurs,
Cubic will probe the link to determine if additional bandwidth is available. Since Cubic
does not rely on ACK messages, performance is improved in links with higher latency as
compared to ACK based algorithms. While the default TCP congestion control algorithm in
Ubuntu is Cubic, this protocol is not designed for use inMPTCP connections. The reason for
this is due to the potential to be unfair to single path TCP sessions. For instance, if aMPTCP
user was using Cubic with multiple subflows and there is a shared bottleneck with a single
path TCP user, the MPTCP user would obtain a larger fraction of the resources [9], [10].
We decided to evaluate the performance of using the Cubic congestion control algorithm
with a testbed that did not have a shared bottleneck between the VPN client and VPN server.
The ndiffports path manager was included as well to provide similarity between tests, but
using this path manager with Cubic would lead to unfair sharing of resources.

Several congestion control algorithms have been designed to optimize MPTCP while pre-
serving fairness to single path TCP connections by coupling the subflows being used [9].
The default congestion control algorithm for MPTCP is Opportunistic Linked Increases
Algorithm (OLIA). OLIA is designed as an improvement to the original Linked Increase
Algorithm (LIA). LIA can suffer from performance issues as well as being aggressive
to single path TCP users [11]. OLIA was designed to provide congestion balancing and
responsiveness simultaneously in order to overcome the limitations of LIA [11]. The OLIA
algorithm was not included in this thesis due to suffering performance issues that have been
improved upon with the Balanced Linked Adaptation (BALIA) algorithm.

BALIA was chosen as the preferred algorithm for this thesis. OLIA may be slow to
respond to network changes, which leads to non-optimal usage of available resources [12].
BALIA was designed to provide a trade-off between responsiveness to network changes
and friendliness to other TCP flows [13]. BALIA works similar to TCP Reno with some
modifications to take into account the multiple subflows. The BALIA algorithm is ACK
based and for connections with a single flow, the algorithm behaves just like TCP Reno with
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a minimum MSS of 2. If multiple connections are present, then BALIA sets a minimum
MSS of 1 and behaves based on the following formulas [13]:

• Congestion window, wr , increase for each ACK on path r:

wr =
xr

rttr ∗ (
∑

xk )2)
∗

1 + αr

2
∗

4 + αr

5
(2.1)

• Congestion window decrease for packet loss:

wr =
wr

2
∗ min(αr, 1.5) (2.2)

• xr =
wr

rttr
and αr =

max(xr )
xr

Equations 2.1 and 2.2 demonstrate the meaning of a coupled congestion control algorithms.
The congestion window increases and decreases based on the performance of the other
subflows being used. With the congestion window being controlled as described, BALIA
was shown to bemore friendly to single path TCP flows and alsomore responsive to network
changes when compared to other MPTCP congestion algorithms [13].

2.2.6 OpenVPN MPTCP Interaction
As discussed in Section 2.1.1, OpenVPN operates at layer 2 or 3 in the OSI model. This
meansMPTCP can affectOpenVPNoperation in unexpectedways. Figure 2.8 is a high-level
view on how OpenVPN interacts with the kernel space.

When an application has data to send it is passed down to the kernel where normal routing
table decisions direct the use of the VPN tunnel interface [14]. The data is then passed back
up to user space for the necessary encryption and fragmenting done by OpenVPN. From this
point the data is passed back down to the kernel space for delivery to the VPN server. Each
time the data is passed to the kernel space, MPTCP may adjust the end destination of the
data based on path managers and schedulers in use. For instance, if the user’s end goal was
a MPTCP web server, the first time the data is passed to kernel space the MPTCP protocol
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Figure 2.8: OpenVPN Interaction with Kernel. Adapted from [14].

may have a different route for the traffic than through the desired VPN tunnel. This route
may have been learned through the ADD_ADDR or MP_JOIN processes. This would be an
unwanted side effect of using MPTCP and was discovered to happen during familiarization
testing. The ideal situation for using MPTCP with OpenVPN is to have a TCP connection
between the user and end host, and a MPTCP connection between the user and VPN server.
Since the data from the user enters the kernel space two times, this separation is possible.

17



2.2.7 Enabling MPTCP on Host Machine
The most common use of MPTCP users can install and customize is the Linux MPTCP
kernel [5]. MPTCP is not available in a standard Linux operating system. Instead, MPTCP
is built on top of the Linux operating system. Depending on the version of Linux installed,
the version of MPTCP supported will vary. Ubuntu 14.04 and MPTCP version 0.90 were
used for this thesis. A brief description of how to install and configure MPTCP will be
discussed in this section. For a more in depth tutorial, the reader is encouraged to refer
to [5] and Appendix B of a thesis written by Henry Foster [15].

In order to install and use MPTCP, the user may follow these basic steps:

1. Install the Ubuntu operating system, such as 14.04.
2. Add the apt-repository and key from [5].
3. Install MPTCP: sudo apt-get install linux-mptcp

4. Configure routing following instructions or installing scripts provided by [5].
5. Restartmachine and selectMPTCPkernel, holding the shift key at startup if necessary.
6. Choose desired MPTCP path manager:

sudo sysctl -w net.mptcp.mptcp_path_manger=INSERT_NAME

7. Choose desired MPTCP scheduler:
sudo sysctl -w net.mptcp.mptcp_scheduler=INSERT_NAME

8. Choose desired TCP congestion control algorithm:
sudo sysctl -w net.ipv4.tcp_congestion_control=INSERT_NAME

9. Launch Wireshark and connect to a MPTCP website, such as [5], to verify proper
operation.

2.3 Related Work
Although there has been extensive work on the development of MPTCP and the various
congestion control algorithms associated with it, there has been little work involving its use
with VPNs. Additionally, there has been some work developing MPUDP applications, but
the implementation has not gained traction for use in additional applications. This section
discusses a gateway to gatewayMPTCPVPN implementation, mobility enhancements using
MPTCP, and an application level implementation of MPUDP with Mobile Shell (MOSH).
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2.3.1 Gateway-to-Gateway MPTCP VPN Implementation
MPTCP has an additional path manager, Binder, that was designed using the gateway-to-
gateway VPN model. Bocassi et al. designed Binder to aggregate paths in a community
network to leverage multipath flows between a VPN relay and VPN proxy [16]. Some
of the benefits of Binder are the ability to aggregate paths to achieve greater performance
and adding redundant paths between the VPN relay and proxy. Binder relies on the use
of proxies and loose source routing mechanisms between gateway VPN routers in order to
achieve these desired benefits [16]. Bocassi et al. used an emulated testbed (Dummynet) to
demonstrate the effectiveness of Binder for this community model. Starting with MPTCP
kernel v0.89, this path manager was added as an option. Binder’s reliance on loose source
routing mechanisms does not lend its use towards a host-to-host or host-to-gateway VPN,
which is more closely related to this thesis.

2.3.2 Mobility with MPTCP
MPTCP provides a different method of adding mobility to applications than Mobile IP.
Mobile IP is not optimal in the make-before-break environment due to its operation at
the IP layer [17]. In a mobile environment it would be favorable to the user to have
multiple connections established even if the extra connections are rarely utilized. In the
event of a connection interruption, such as when leaving a Wi-Fi area, if the user also had
a cellular connection pre-established there would be little to no interruption to service. It
may not always be possible to have multiple connections established when using MPTCP.
Nevertheless, if the user experiences a connection loss, the MPTCP connection will remain
open, but will be in a static state [17]. Once a new connection becomes available, the user
will transmit a join request and the new connection will proceed were the previous left
off. In [17], the authors conducted mobility experiments through the use of simulations
comparing MPTCP, Optimal TCP, and single path TCP. Optimal TCP provided an upper
bound on how well Mobile IP could perform if it knew in advance the best path to utilize
for a set time period [17]. It is clear from the results provided in the paper that the MPTCP
implementation allowed for the best performance. This experiment was conducted again
using a vehicular speed scenario with similar results [17].
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In [18], the authors extend the research of [17] by implementing several different modes of
operation for MPTCP. The different modes are as follows [18]:

• Full-MPTCP: Default mode intended for obtaining optimal data transfer rates.
• Backup: Through the use of the MP-PRIO option, the user can specify which in-
terfaces to primarily transfer data. In the event the primary interface goes down,
the backup interfaces can immediately respond since their connection was previously
established.

• Single-Path: This mode initially establishes one connection. Upon loss of the inter-
face, a new connection is established over another available interface. Unlike Backup
mode, Single-Path will take longer before regaining data transfer.

The authors of [18] evaluated these different modes utilizing connections with a Wi-Fi and
a 3G network. The experiment established a connection with an HTTP application and
then dropped the Wi-Fi connection. As expected the Full-MPTCP mode recovered the
fastest from the loss. The Backup mode also recovered quickly, but not as fast due to the
backup interface having a lower congestion window [18]. The Single-Path and Application
Handover instances took significantly longer to recover since new three-way handshakes
were required prior to restoring data transfer [18]. It is expected that utilizing MPTCP with
OpenVPN will result in similar enhancements to OpenVPN’s mobility.

2.3.3 Multipath-MOSH
MOSH is a project from MIT designed as an alternative to the standard remote SSH shell.
Unlike SSH, MOSH utilizes UDP and allows for intermittent connectivity between the
client and server without the need to re-establish connections manually. Multipath-MOSH
is an enhancement to MOSH to allow for the application to utilize the best flow (similar to
MPTCP subflow) for data transfer [19]. The application begins by determining all available
addresses for the client and server by setting flags in the MOSH header in order to establish
flows for data transfer [19]. To determine which flow to use, the application sends message
probes to evaluate network conditions on the link. These probes adds minimal overhead and
allow for picking the optimal flow based on RTTs and losses experienced [19]. Multipath-
MOSH is a good start towards using MPUDP, but its implementation is specific to the
MOSH application. The ideas present in this implementation can be transferred to work
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in a MPUDP kernel, which would allow all applications using UDP to take advantage of
MPUDP much like the MPTCP kernel. Ideally, the MPTCP kernel should be adapted to
also perform MPUDP, thus becoming a more general multipath kernel.

21



THIS PAGE INTENTIONALLY LEFT BLANK

22



CHAPTER 3:
Performance Evaluation of MPTCP-VPN Integration

In this chapter we investigate the use of MPTCP within a VPN, specifically OpenVPN.
To better understand how MPTCP interacts with OpenVPN, Figure 3.1 illustrates the con-
nection and tunnel construction process of a VPN client and server that have MPTCP
capability.

Client Server
3-Way Handshake

MP_SYN
MP_SYN/ACK

SOCK_1

MP_ACK

Handshake Complete
OpenVPN Build Tunnel

Control Hard Reset
Control Hard Reset

OpenVPN Control Traffic OpenVPN Control Traffic
SOCK_1

MP Join Handshake
Join_SYN

Join_SYN/ACK

SOCK_2

Join_ACK

Join Handshake Complete

TLS Process TLS Process
SOCK_1&2

OpenVPN Control Traffic OpenVPN Control Traffic
SOCK_1&2

OpenVPN Tunnel Complete

Figure 3.1: MPTCP VPN Connection Process

The VPN client begins with a MP_CAPABLE three-way handshake procedure. Upon
completion, the client and server will issue hard reset messages followed by VPN control
traffic to establish setup parameters. If the client has additional interfaces or ports to
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use, then additional MP_JOIN three-way handshakes will be performed. Once additional
subflows are established, the remaining traffic may take place using any subset of subflows.
To setup the security of the VPN, the SSL/TLS process described in Section 2.1.3 is
performed. The client and server will then exchange the final control traffic to finish the
tunnel parameter configurations. The VPN tunnel is now built and available for use with
any subset of subflows available.

VPNs are known to have performance degradations when using TCP as the tunnel protocol.
We aim to discover if the TCP over TCP problems exist when using MPTCP to establish the
tunnel. We begin with a simplified testbed with symmetric link qualities. Using symmetric
links simplifies how the scheduler performs since each link will have the same RTTs. The
testbed is thenmodified to have asymmetric links to see the performance differences between
symmetric, moderate, and severe asymmetric connections when using the fullmesh path
manager. An additional benefit of MPTCP is an increase in mobility, much like Mobile IP.
Thus, after evaluating performance, we developed a separate testbed to test the mobility of
the VPN when using MPTCP. The degree of mobility added to the VPN is the goal of this
evaluation.

3.1 Performance Testing
In this section, we first discuss the simulation testbed topology and baseline system param-
eters for testing a MPTCP VPN. We then discuss the implementation of the testbed in a
virtual environment and then a physical environment. After the testbed implementation is
completed, performance is evaluated using fullmesh, ndiffports, and a single TCP connec-
tion with symmetric links between the VPN client and server and equal propagation RTTs
and packet loss rates. TCP performance is known to suffer from the TCP over TCP effects
discussed in [2] and [3], but these effects may not be as severe when using MPTCP. We
hypothesize that using MPTCP to establish the VPN tunnel will result in increased perfor-
mance compared to a standard TCP VPN tunnel. Additionally, we believe tests utilizing
the default Linux TCP congestion control algorithm, Cubic, with MPTCP will result in
unacceptable aggressive performance.

The typical use of MPTCP will be with links that are asymmetric. For example, a wireless
and Ethernet or wireless and cellular connections. We test this asymmetric environment
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with moderate and severe asymmetric links between the VPN client and server. This
comparison also allows for insight on how the MPTCP default scheduler will perform since
the amount of traffic sent on each link will vary as discussed in 2.2.4. We hypothesize the
severe asymmetric tests will outperform the moderate tests since the majority of traffic will
utilize the primary link and still be able to take advantage of additional bandwidth of the
secondary link without suffering significant loss rates.

3.1.1 Simulation Topology
We begin with developing the topology of the testbed to meet the test goals. The conceptual
setup is illustrated in Figure 3.2.

VPN Server

Primary Link

Secondary Link

VPN Client

Web Server

Figure 3.2: Conceptual Simulation Setup

The topology of Figure 3.2 utilizes two paths between the VPN client and VPN server.
The use of two paths was determined to allow for sufficient testing all MPTCP path man-
agers without introducing additional complexity that would come with additional paths.
Additionally, the choice to have a web server only accessible by the VPN server ensures
the VPN client will not be able to send and receive traffic from the web server without
using the established VPN tunnel. This was a concern since traffic was observed outside
of the VPN tunnel when using the fullmesh path manager during familiarization testing.
This was a result of the MP_JOIN and ADD_ADDR options being utilized, which initiated
connections between the VPN client and web server without the use of the tunnel.
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The base system parameters for the topology of Figure 3.2 is detailed in Table 3.1. MPTCP
kernel v0.90 was chosen since it was the stable release at the time of testing. MPTCP v0.91
has since been released, but the features used during this testing were not significantly
altered. Additionally, the MPTCP scheduler chosen was the default version for the reasons
discussed Section 2.2.4. The OpenVPN version used was also based on the most stable
release at the time of the tests. It is important to use an OpenVPN version that is 2.3.9
or greater because prior versions of set default buffer sizes for the VPN tunnel that were
insufficient. Since version 2.3.9, these buffer sizes are set by the operating system by default.
VPN compression and encryption were disabled in order to simplify testing and analysis.
The VPN encryption was enabled during the familiarization phase in order to ensure traffic
was using the VPN tunnel. Once this was verified, all further testing disabled encryption.
All machines were chosen to run Ubuntu 14.04 based on compatibility with MPTCP v0.90
and user familiarity with the platform. All TCP settings listed were the default settings for
Ubuntu 14.04 as well.

Table 3.1: System Configurations
Parameter Setting/Value

VPN
Machines

MPTCP Kernel v0.90
MPTCP Scheduler Default
VPN Version OpenVPN 2.3.12
VPN Ports 443 TCP / 1000 UDP
VPN Compression Disabled
VPN Encryption Disabled *

Web
Server

TCP Congestion Control Cubic
Web Server Apache2
Test File Size 16331410 Bytes

All
Machines

Operating System Kernel Ubuntu 14.04
TCP Window Scaling Enabled
TCP SACK Enabled
TCP Timestamps Enabled

*Encryption disabled after verification of proper data encryption through VPN tunnel
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3.1.2 Virtual Testbed Implementation
We begin with a testbed using virtual machines within a Virtualbox environment. Link
parameters were set using Virtualbox, the Linux traffic controller (tc), and the Linux
network emulator (netem). Virtualbox was used to set the same speed of 12 Mbps for
all links between the VPN client and server machines. The link speed between the VPN
server and web server was set to a 1 Gbps link to simulate a local web server. In order to
set the packet loss rates and propagation delays experienced between the VPN client and
server, the traffic controller was used on each interface of the Bridge machine of Figure 3.2.
For example, if a packet loss rate of 1% and 100ms propagation delay was set, then each
interface would have a packet loss rate of 1% and propagation delay of 50ms set. Thus
delay was considered to be a RTT adjustment as opposed to a one-way delay.

The performance of the MPTCP VPN tunnel connection was evaluated by measuring the
goodput experienced when downloading a test file from the web server. This test was
conducted using the standard Linux TCP congestion control algorithm of Cubic. During
initial testing to ensure the virtual testbed provided realistic results, performance anomalies
were present and can be seen in Figure 3.3.

Figure 3.3: Virtual Machine Performance with 0.5% Packet Loss

Error Bars Show 95% Confidence Interval

Thefirst anomaly is the significant drops in performance forMPTCPwhile TCPperformance
slightly decreased. The other significant result was MPTCP performance for fullmesh and
ndiffports dropped below single path TCP once the delay reached 60ms. To validate these
initial results, we decided to build a physical environment.
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3.1.3 Physical Testbed Implementation
We began by implementing the physical testbed to match the previous setup seen in Figure
3.2 and Table 3.1 as closely as possible. One notable difference was the physical testbed
used 10 Mbps link speeds instead of the 12 Mbps speeds of the virtual testbed. The 10
Mbps link speeds were specified using the Linux ethtool application on the bridge machines
instead of the Linux traffic controller. The Linux traffic controller utilizes a token bucket
filter in order to control the speed of the link, but this method did not regulate the speed as
effectively as the ethtool application. Since the goal was to confirm trends, this difference
in speed was not significant enough to be of concern. Once the physical environment
was established, we ran the same tests as performed in the virtual environment. Figure
3.4 illustrates the test case of a 0.5% packet loss rate using the Cubic congestion control
algorithm.

Figure 3.4: Physical Performance with 0.5% Packet Loss

Error Bars Show 95% Confidence Interval

The anomalies seen by the virtual testbed are no longer present in the physical testbed. As
theMPTCP performance is affected by the propagation delays added, the TCP connection is
also affected. Additionally, MPTCP outperforms the single TCP test and the ndiffports test
for all conditions. After confirming the anomalies were no longer present in the physical
testbed, we revisited the virtual testbed to determine if incorrect configurationswere present.
All machines were found to be using a non-default network adapters. Once this setting was
returned to the default value of PCnet-FAST III, except for the VPN server to Web server
link, the virtual tests were performed again. The results matched the physical environment,

28



thus validating the network setting as the root cause of the anomalies. For the remainder
of the tests, the physical testbed was utilized and verified to be consistent with the virtual
testbed.

Physical Testbed Baseline Configuration
The baseline system parameters set by the operating system and link speeds are provided in
Table 3.2, followed by a brief description of the parameters.

Table 3.2: Baseline Configurations
Parameter Value

Operating
System

net.ipv4.tcp_congestion_control Cubic or BALIA
net.ipv4.tcp_rmem 4096, 87380, 6291456
net.ipv4.tcp_wmem 4096, 16384, 4194304
net.core.rmem_max 212992
net.core.rmem_default 212992
net.core.wmem_max 212992
net.core.wmem_default 212992
net.ipv4.tcp_no_metrics_save Enabled

Link
Speeds

Primary 10 Mbps
Secondary 10 Mbps

• net.ipv4.tcp_congestion_control: Designates the TCP congestion control algorithm
to be utilized. If congestion control algorithms designed for MPTCP are installed in
the kernel, this is still the method for setting the desired algorithm.

• net.ipv4.tcp_rmem & net.ipv4.tcp_wmem (min, default, max): Sets the size of
the TCP socket receive/send buffer in units of bytes. The operating system will assign
values based on the memory available, but the user can set these parameters in order
to improve performance (e.g., if using high bandwidth links).

• net.core.rmem & net.core.wmem (max, default): Sets the operating system re-
ceive/send buffer for any type of connection in units of bytes. This is also set since
the tcp_rmem or wmem settings do no overwrite these values.

• net.ipv4.tcp_no_metrics_save: Sets whether or not connection data will be saved for
a short period of time after finishing a TCP connection. This is disabled by default,
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meaning that connection information, such as congestion window, will be maintained.
The idea is that connecting to the same IP multiple times in a short period can use
the previous data to improve performance.

3.1.4 Symmetric Tests with Cubic Congestion Control
The first test scenario performed was via links with symmetric link propagation RTTs and
packet loss rates using the congestion control algorithm Cubic. To achieve a relatively small
95% confidence interval, tests were repeated 10 times for each RTT/loss-rate combination.
Results for these tests are provided in Figure 3.5.

(a) No Packet Loss (b) 0.1% Packet Loss

(c) 0.5% Packet Loss (d) 1% Packet Loss

Figure 3.5: Symmetric Cubic Test Results

As seen in Figure 3.5a, when no loss is applied to the links, MPTCP with the fullmesh
path manager exceeds the performance of ndiffports and TCP. In Figure 3.5b, when 0.1%
loss is applied to both links we can see that fullmesh again has the best performance, but
ndiffports also outperforms TCP when the delay reaches 40ms. Figures 3.5c and 3.5d show
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similar performance results with the exception that the fullmesh path manager no longer
significantly outperforms ndiffports as the delay increases. As expected, once packet loss
rates are increased, the fullmesh path manager yields goodput values more than double that
of TCP. This behavior is attributed to the aggressive nature of the Cubic congestion control
algorithm.

3.1.5 Symmetric Tests with BALIA Congestion Control
The TCP Cubic algorithm was not developed to take advantage of MPTCP while at the
same time remaining fair to single path TCP connections. For that reason we also tested
performance with the newest of the MPTCP congestion algorithms known as BALIA. The
only modified parameter of Table 3.2 was the congestion control algorithm used, all other
settings remained the same. Again tests were repeated 10 times for each RTT/loss-rate
combination to produce relatively small 95% confidence intervals. The BALIA results can
be seen in Figure 3.6.

(a) No Packet Loss (b) 0.1% Packet Loss

(c) 0.5% Packet Loss (d) 1% Packet Loss

Figure 3.6: Symmetric BALIA Test Results
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Similar to the results of Section 3.1.4, the fullmesh path manager performs significantly
better than TCP. Also, the same trend with ndiffports was seen throughout all tests. One
significant difference is the fullmesh path manager does not achieve goodputs greater than
twice that of TCP. This is expected since the BALIA algorithm is designed to be fair to
single TCP connections.

Adding Additional Subflows

The MPTCP kernel allows setting the desired number of subflows to be created on each
path for the different path managers. All testing up to this point used the default values for
each path manager. The default value for the fullmesh path manager is 1 subflow per path,
while the default for ndiffports is 2 subflows. We decided to change this default value to
create additional subflows on each path to determine the affect on the performance. We
first evaluated the fullmesh path manger with subflow values ranging from the default of 1
to a value of 5 subflows per path. We then normalized the goodputs achieved to that of a
single TCP Cubic connection and graphed the percentage increase experienced. TCP Cubic
performance was chosen as a comparison since it was shown to have the best performance
for single path TCP. The results when normalized to a TCP Cubic connection can be seen
in Figure 3.7.

(a) 0.1% Packet Loss (b) 1% Packet Loss

Figure 3.7: Fullmesh Performance with Varying Subflow Settings

Error Bars Show 95% Confidence Interval
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As seen in Figure 3.7a, adding additional subflows allows the fullmesh path manager to
achieve significant improvements over TCP, but is unable to achieve more than a 100%
increase. Alternatively in Figure 3.7b, the fullmesh path manager may greatly surpass
the 100% goal marker as the number of subflows is increased. These results were also
normalized to TCP Reno for comparison. The performance increases were much larger for
the longer RTT cases since the Reno algorithm is dependent on ACK messages to increase
its window size.

After seeing the performance benefits of adding additional subflows to the fullmesh path
manager, we performed the tests again using the ndiffports pathmanager with subflow values
ranging from the default of 2 to a value of 5 subflows per path. Figure 3.8 illustrates the
performance percentage increased experienced with results normalized to that of a single
TCP Cubic connection.

(a) 0.1% Packet Loss (b) 1% Packet Loss

Figure 3.8: Ndiffports Varying Subflow Performance

Error Bars Show 95% Confidence Interval

As seen in Figure 3.8a the results of adding additional subflows were less pronounced than
with the fullmesh path manager. Nonetheless, the ndiffports was able to gain and sustain
an increase when using 5 subflows. Figure 3.8b shows ndiffports outperforming TCP for
all number of subflows. Notably, the 5 subflow test was able to achieve just over 100%
performance increase. These test were again normalized to TCP Reno for comparison and
showed similar results.
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3.1.6 Asymmetric Tests with BALIA Congestion Control
When using MPTCP it is more common that links will not be symmetric. For example, a
user may be using a wireless link and a cellular link, which are very likely to have different
RTTs and packet loss rates. The same baseline configurations of Table 3.2 were used for
the asymmetric tests. Table 3.3 lists the additional parameters used during the asymmetric
tests.

Table 3.3: Asymmetric Test Parameters
Sum Delay Sum Loss Even Moderate Severe

20ms

0%
10ms, 0% 8ms, 0% 5ms, 0%
10ms, 0% 12ms, 0% 15ms, 0%

0.1%
10ms, 0.05% 8ms, 0.03% 5ms, 0%
10ms, 0.05% 12ms, 0.07% 15ms, 0.1%

0.5%
10ms, 0.25% 8ms, 0.15% 5ms, 0%
10ms, 0.25% 12ms, 0.35% 15ms, 0.5%

1%
10ms, 0.5% 8ms, 0.3% 5ms, 0%
10ms, 0.5% 12ms, 0.7% 15ms, 1%

40ms

0%
20ms 0% 15ms 0% 10ms 0%
20ms 0% 25ms 0% 30ms 0%

0.1%
20ms 0.05% 15ms 0.03% 10ms 0%
20ms 0.05% 25ms 0.07% 30ms 0.1%

0.5%
20ms 0.25% 15ms 0.15% 10ms 0%
20ms 0.25% 25ms 0.35% 30ms 0.5%

1%
20ms 0.5% 15ms 0.3% 10ms 0%
20ms 0.5% 25ms 0.7% 30ms 1%

We decided to perform the asymmetric tests using the 20ms and 40ms propagation RTTs
because these are typical RTTs experienced. For each RTT we ran tests using the same loss
rates seen in the symmetric tests. The even tests represent the symmetric tests previously
conducted. The moderate tests represent roughly a 40/60 split of the total RTT delay and
loss. The severe tests represent roughly a 25/75 split to illustrate two dissimilar links being
utilized. The results of this test can be seen in Figure 3.9.
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(a) 20ms RTT (b) 40ms RTT

Figure 3.9: Asymmetric Performance with Different Link Conditions

Error Bars Show 95% Confidence Interval

Figures 3.9a and 3.9b show the severe, moderate, and even tests having similar performance
for the 0% and 0.1% loss cases. Figure 3.9b begins to show differences at the 0.5% test,
where the severe case maintains approximately 10 Mbps. This difference grows as the loss
rate reaches 1%, but the severe test case remains unchanged. To evaluate a possible reason
for this behavior, we can use throughput models. The BALIA algorithm is reliant on ACK
messages to increase window sizes similar to that of TCP Reno, thus a simplified TCP
throughput model could be used [20]:

T =
MSS ∗ (

√
3
2 )

RTT ∗ (
√

p)
(3.1)

For Equation 3.1, p refers to the loss rate of the link. The loss rate can be considered as a
constant in terms of each data point in the test. The MSS is also constant across the tests.
This results in the RTT being the driving factor for throughput experienced. Using this
formula additively for multiple subflows, the even case should yield the lowest results and
the strong asymmetric tests the highest results. This behavior can be seen in Figures 3.9a
and 3.9b as the packet loss rate increases.
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3.2 Mobility Testing
MPTCP has the potential to provide seamless mobility as discussed in Section 2.3.2.
We believe seamless mobility with OpenVPN be achieved by using MPTCP. To test this
hypothesis, we first develop a new testbed to allow easily changing between different subnets
to simulate a mobile client. We begin the mobility test by establishing a frame of reference
using a single path TCP connection while changing between subnets. We then compare the
results to that of a MPTCP connection.

3.2.1 Mobility Topology
The network testbed, Figure 3.10, was established using Cisco 2800 series routers, personal
computers, and a network switch. Virtual machines and additional network traffic were not
used during the simulations. When MPTCP was used, MPTCP kernel version 0.90 was
installed on an Ubuntu 14.04 computer. The OpenVPN client and server were configured
to perform a TLS handshake for initial connection and to use encryption when sending
packets over the tunnel. This ensured packets were being sent over the tunnels for all tests.

BANetwork: C

VPN Client

T2T1 T3

VPN Server Web Server

Figure 3.10: Conceptual Mobility Simulation Setup
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3.2.2 OpenVPN Configurations
Once OpenVPN is installed, modifications to default settings occur within the configuration
file. The purpose of the experiment was to examine and evaluate a mobile solution with
OpenVPN, therefore we altered settings that would best facilitate mobility and testing. To
enhance mobility, we set the server keep-alive parameter to ping every 10 seconds and
assume the remote peer is down if there is no return message within a 30 second period. We
also set persistent tunnel and persistent key to yes, thus ensuring the server tunnel remained
active with the same parameters even if connections were lost. To simplify testing we
decided to not allow split-tunneling. To do this, we tunneled all traffic through the VPN
using the redirect-gateway push option.

OpenVPN client parameters are similar to the server parameters except there are fewer and
they are meant to interact with the server. Redirect-gateway remains in the client as well
as encryption settings. For the purposes of this experiment, the OpenVPN server created
certificates that it would accept. We ensured those certificates were stored on the client
configuration file establishing the VPN.

3.2.3 Single Path TCP Test
Prior to testing the effects of MPTCP on the mobility of OpenVPN, we first needed to
establish a benchmark level of mobility seen by a single path TCP connection. We began by
establishing a VPN connection between the client and server via the T1 link of Figure 3.10.
Afterwards, Wireshark was activated on all devices and a download initiated using wget
from the client and a simple HTTP server running on the web server. Then we disconnected
the client’s T1 interface and enabled the client’s T2 interface. We verified the download was
interrupted and observed whether or not the connection was regained. If the connection was
not regained, we analyzed our configuration parameters to determine if the correct settings
were applied and, if necessary, the test was repeated with the new settings. Data points
collected included the amount of time needed to re-establish the tunnel and time before
the download recommenced. The test was repeated again using Firefox instead of wget to
determine web browser support.
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TCP Tunnel Results
The first drawback to using a standard TCP connection with a web browser was that web
browsers will not repeatedly try a download after sensing a network connection is lost.
This resulted in the TCP tunnel not supporting mobility while using a web browser. It was
discovered, however, that these tunnel options do provide a degree of mobility for command
line downloads, butmobility sufferedwhen improperVPN settingswere configured. During
the first round of testing, the VPN was configured to allow for duplicate client certificates to
be used. When the single interface was dropped and the secondary interface was enabled,
the VPN tunnel was rebuilt after the keep-alive timer re-initiated the connection, but the
client was given a new tunnel IP address that was different than the previous address. This
resulted in a failed download via the command line even after the tunnel connection was
automatically re-initiated. Follow on testing showed that when the server did not enable
duplicate certificates, the client was able to reconnect with the server and receive the same
IP address as it previously had. The results of this test are provided in Figure 3.11.

Figure 3.11: Web Server to VPN client TCP Mobility Test

Although the download did not immediately resume, it was eventually able to resume after
the tunnel finished reconnecting. It should be noted that the tunnel was able to reconnect
automatically after the 30 second keep-alive timer expired, but the download took some
time before recommencing. Thus some mobility was achieved in the sense that the client
did not need to manually reconnect to the VPN server, but was only able to take advantage
of changing IP subnets when conducting business via the command line.
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3.2.4 MPTCP Test
TheMPTCP test outlinewas very similar to the single path version. The procedure remained
the same from establishing the VPN through starting a download. Then the client’s T1
interface was disconnected during the download and the T2 interface was connected. Once
we verified the download was not interrupted, the T2 link was disconnected and the T3
link was established. Once again we verified if the new connection was able to join the
download. After completing these tests, we performed the tests a second time with the
exception of establishing the T1 and T2 links prior to dropping T1 and connecting the T3
link.

MPTCP Results
MPTCP with the fullmesh path manager enabled the OpenVPN tunnel to be created with
multiple subflows using all available interfaces on the client and server. The use of the
multiple subflows allowed for a subset of the interfaces to be disconnected during the
download, either via the command line interface or via a web browser, and the download
would continue at the capacity of the remaining connections. The results of the initial test
are provided in Figure 3.12.

Figure 3.12: Web Server to VPN client MPTCP Mobility Test
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The client’s T1 interface was disconnected at approximately the 5 second mark followed by
the T2 interface being connected. Once the host gained the new IP address, the interface
immediately joined the download by use of the MP_JOIN option. Unlike the TCP model,
the tunnel did not need to be re-established and the download was able to quickly start
again. This same result is seen again when the client’s T2 interface is disconnected around
the 17 second mark followed by the T3 interface being connected. These tests illustrate
using MPTCP with a VPN enables mobile hosts to change subnets without interruptions
to the tunnel. This feature is similar to that of Mobile IP, but is able to take advantage
of aggregating flows across multiple connections as well as eliminating the need for the
home/foreign records required by Mobile IP.

3.3 Chapter Summary
In this chapter we evaluated the performance of using MPTCP to establish an OpenVPN
connection. Wewere able to show that usingMPTCP in aVPNyielded superior performance
to that of a single path TCP VPN. When the Cubic congestion control algorithm was used
withMPTCP, the fullmesh and ndiffports tunnels significantly outperformed the single path
TCP tunnel. This algorithm is known to be aggressive to single path TCP connections over
a shared bottleneck, thus its use should be limited to connections with disjoint paths. The
MPTCP congestion control algorithm, BALIA, was also able to outperform the single path
TCP tunnel. Additionally, when the MPTCP subflow parameters were adjusted to perform
additional connections in the tunnel, the performance of theMPTCP tunnel increased. Each
subflow was able to take advantage of the additional bandwidth available, leading to the
aggregate bandwidth utilization to be greater than with fewer flows.

Further testing with asymmetric links showed that all the asymmetric tests yielded better
performance than a single TCP tunnel. The severe asymmetric test yielded better results
for the majority of the tests since the primary link with lower RTT and packet loss rates
could handle the majority of the traffic. The secondary link with the higher RTT and
packet loss rates could still be utilized at a lower packet rate to achieve greater cumulative
bandwidth. Some tests, particularly where there was a low loss rate and RTT, indicated
better performance would be seen with symmetric links. This performance different was
not significantly larger and further testing may be useful to determine the root cause for this
observation.
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Regardless of the performance experienced, users may place more importance on mobility.
From themobility standpoint, we were able to realize benefits of using aMPTCP connection
with OpenVPNwhen focusing on mobile hosts connecting to a VPN gateway. Most notably
was the ability to drop single or multiple interfaces and either maintain the download in
progress or rapidly regain the download as soon as a new IP address was established.
Also notable was the ability to utilize a web browser to conduct downloads while changing
subnets without an interruption to the download. Using aMPTCPVPN tunnel was shown to
provide performance benefits in terms of achievable bandwidth as well as seamless mobility.
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CHAPTER 4:
MPUDP Design and Implementation

Chapter 3 focused on VPN performance when using TCP and MPTCP tunnels. These
protocols were subject to the effects of TCP over TCP as discussed in [2], [3]. For this
reason the default protocol used for various VPNs is UDP. Using the physical testbed and
symmetric link test procedures from Section 3.1.4, we compared single path UDP and TCP
tunnel performance. Figure 4.1 compares the performance of a TCP in UDP connection to
that of a TCP in TCP connection using the Cubic congestion control algorithm.

Figure 4.1: TCP in UDP Tunnel Performance

Error Bars Show 95% Confidence Interval

The UDP tunnel consistently outperforms the TCP tunnel since it is not subjected to a
second layer of congestion control. The TCP in UDP tunnel connection will rely on the
inner TCP connection with the web server to handle the congestion control and loss of
packets. This allows for less traffic between the VPN client and server since the UDP
tunnel does not require acknowledgement of traffic. We also showed in Chapter 3 how the
use of MPTCP in the VPN tunnel could produce significantly better results than a single
path TCP tunnel. Unfortunately, a MPUDP Linux kernel implementation to help improve a
UDP tunnel does not exist. For this reason, we develop a basic MPUDP kernel in order to
determine if similar performance benefits can be seen for a MPUDP VPN tunnel.

43



AsUDPandTCP share several common functions, such asmultiplexing and de-multiplexing
of traffic of different applications, we will first examine the existing design of MPTCP in
Linux to gain the insights required for an expedient prototyping of MPUDP functionality.
With this understanding, we discuss the basic implementation of the MPUDP kernel to
allow for proof of concept testing. We finish with a discussion of the results of this testing.

4.1 Designing MPUDP
Two of the key principles of MPTCP are the ability for it to fall back to a TCP connection
automatically and to minimize the memory footprint needed to add in theMPTCP capability
[9]. In TCP/IP Illustrated, the author explains how the various TCP functions interact within
the kernel. A modified version of this interaction to include the additional MPTCP aspects
is provided in Figure 4.2.

ipintr

tcp_input

socket
receive buffer

MPTCP
Handler

tcp_output

tcp_userreq Path
Manager

various
system calls

ip_output

tcp_ctloutput

getsockopt
setsockopt

n tim
es

Figure 4.2: MPTCP Relationship to Kernel. Adapted from [21].
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Not all systems are capable of usingMPTCP, thus it is important for connections to fall back
to TCP if necessary. This is the reason for theMPTCPHandler and PathManger modules of
Figure 4.2 to not cause a stoppage in the flow of the graph. If the MPTCP handler is enabled
it will adjust how the TCP messages from the tcp_input are assembled and delivered to the
application. Additionally, if MPTCP is enabled, the Path Manager will modify the TCP
messages generated by the application to fully utilize all interfaces available for MPTCP.
Just like MPTCP was able to fall back to a TCP connection, the MPUDP protocol should
not cause adverse effects to the single path UDP traffic. With respect to minimizing the
memory footprint, we decided to use two kernel modules with minimal kernel code added
to the udp.c file. Linux kernel modules are able to be loaded and unloaded as needed
and are not part of the base Linux kernel. The modules add code to the kernel as needed
by the user to provide a function without the need to recompile the kernel with the added
code. Kernel modules allow for easily modifying the MPUDP functions without the need
to recompile the kernel after each change. This also allows the modifications to the kernel
udp.c file to be kept to a minimum. This design concept is provided in Figure 4.3.

ipintr

udp_input

socket
receive buffer

MPUDP
Send

udp_output

udp_userreq

MPUDP
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various
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Figure 4.3: MPUDP Relationship to Kernel. Adapted from [21].
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Not all Internet traffic will be well suited for MPUDP. MPUDP may provide significant
benefits for establishing VPN tunnels, traffic consisting of bulk data transfers, and streaming
traffic. There would be little to no benefit in using MPUDP for interactive/transactional
traffic, such as Domain Name System queries. For this reason, we decided the user should
be able to enable MPUDP and the parameters used through the use of sysctl commands as
done for MPTCP.

4.1.1 Establishing a Multipath Connection
MPTCP connection establishment, depicted in Figure 4.4, follows the same three-way
handshake process as TCP. Using a client/server framework, the MPTCP client is unable
to determine ahead of time if the server will support MPTCP. For this reason, when the
client initiates the handshake only the minimal MPTCP information is produced, not the
complete MPTCP socket and control buffer. The only additional information generated is
the MP_CAPABLE flag and session key [9].

connect () 

tcp_connect () 

tcp_connect_init () 

mptcp_connect_init () 

mptcp_set_key_sk () 

_mptcp_insert_hash () 

tcp_sock 
“meta-
socket”  

h 
a 
s 
h 
t 
a 
b 
l 
e 
 
 

User	
space	

Kernel	
space	

socket 

(a) Client SYN

tcp_rcv () 

tcp_rcv_synsent_state_process () 

mptcp_rcv_synsent_state_process () 

mptcp_create_master_sk () 

mptcp_add_sock () 

tcp_sock 
“meta-
socket”  

h 
a 
s 
h 
t 
a 
b 
l 
e 
 
 

User	
space	

Kernel	
space	

mptcp_alloc_mpcb () 

mptcp_tcp_sock 

mptcp_cb 

socket 

tcp_sock 

mptcp_tcp_sock 

(b) Server SYN/ACK

Figure 4.4: MPTCP Connection Process. Adapted from [9].

TheMPTCP server, upon receiving anMP_CAPABLE SYNmessage, will completely allo-
cate the required structures for aMPTCP connection. If the client receives aMP_CAPABLE
SYN/ACKmessage from the server, then the client will also allocate the appropriateMPTCP
structures [9]. This process will reduce the memory footprint when aMPTCP capable client
connects to a single path server. If the client generated all structures needed for a MPTCP
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connection that would fall back to a single TCP connection, then memory would be unnec-
essarily allocated and wasted.

The main challenge with a UDP protocol is that there is no handshake process to establish
a connection. This means the same MPTCP connection process to determine if both the
client and server were MPTCP capable will not be possible without modification to the
protocol. Instead, there will need to be some mechanism for the client to signal the server
of its intention to use MPUDP. Our first thought was to use the UDP header to signal the
server much like MPTCP sets flags to send signals. However, we determined that the UDP
header does not contain room for adding modifications that could survive passing through
middle-boxes. Another possibility would be to extend the UDP header to allow for adding
signaling information, but this was considered to be too invasive to the UDP protocol. In
the end we decided it would be best to use a specified port for listening to incomingMPUDP
control traffic. For instance, the MPUDP server could advertise a default listening port of
8080 for MPUDP control traffic. All control traffic could be stored in a multipath control
block structure to allow for quick reference and minimal additional memory requirements.
The MPUDP client would use a sysctl variable to set this control port and then send initial
connection information to learn availability of additional interfaces. Once additional IP
addresses are known, both the client and server could begin utilizing extra paths to enhance
the performance of an existing connection or future connections. It is also important at this
step to initialize a connection key to ensure all additional control information is able to be
authenticated, much like the MPTCP kernel does during the initial handshake. If the server
was not MPUDP capable, then this control traffic would be dropped and the user connection
would default to UDP as desired.

4.1.2 Path Managers
After establishing the initial MPTCP connection, the selected path manager will attempt to
establish additional socket connections. Figure 4.5 depicts the process required to establish
the additional connections. The path manager will create and bind a new TCP socket
and send a SYN message along with the MP_JOIN flag set [9]. If the MPTCP server
receives the join request, the request is processed and the subflow added to the meta-socket
information [9]. With the new connection added to the meta-socket, the packet scheduler is
able to consider the link for sending traffic.

47



mptcp_init4_subsockets () 

init_bind () 

init_stream_connect () 

User	
space	

Kernel	
space	

path manager 

init_creat () 

mptcp_add_sock () 

(a) Path Manager

mptcp_lookup_join () 

tcp_rcv () 

tcp_conn_request () 

User	
space	

Kernel	
space	

mptcp_do_rcv () 

init_lookup_listener () 

mptcp_do_join_short () 

mptcp_join_request () 

(b) Join Request

Figure 4.5: MPTCP Additional Subflow Process. Adapted from [9].

The MPUDP design could utilize the same concept as MPTCP for path managers. The
ndiffports and fullmesh path manager design of allocating additional sockets for use would
be the same for theMPUDP protocol. WhereMPUDP can differ is the need for a connection
to join an existing connection. This processwould be controlled using the control port for the
MPUDP connection. If additional interfaces are made available after the initial connection
process, the user would signal the server of the additional source IP address(es) for the
MPUDP connection to allow an update to the server’s control structure.

4.1.3 Packet Scheduler
The next step is to determine an appropriate packet scheduler. Unlike MPTCP, MPUDP
does not need to collect incoming packets and ensure their delivery in the proper order. Thus,
there is no need for DSS to ensure proper delivery of in order packets. Unfortunately, UDP
does not track RTTs or network congestion. There must be another method implemented in
order to determine the best path for sending data. We examined a couple different methods
to determine path conditions. One method would be to use a similar method to Multipath-
MOSH discussed in Section 2.3.3. The client and server could periodically probe the links
to determine RTT and link congestion. This method would introduce additional overhead,
but the overhead in the Multipath-MOSH case was shown to be minimal. Another method
would be to infer network conditions by sending statistics over the MPUDP control channel.
The client and server could store the information, such as the number of packets delivered
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per interface, in the multipath control block structure. Alternatively, a simplified packet
scheduler like the round-robin scheduler of MPTCP could be used to split traffic evenly
across links.

4.2 Implementation and Testing of MPUDP
The MPUDP kernel was implemented into the MPTCP v0.90 kernel used in Chapter
3. We chose to include the MPUDP protocol in the MPTCP kernel to allow for testing
performance on the same kernel as well as moving towards an end goal of a true multipath
kernel. Although the MPTCP protocol implementation involved adding multiple header
and C files, as well as modifications to multiple TCP files, our MPUDP implementation
added a minimal amount of code to the udp.c file and used two Linux kernel modules
to introduce the additional functions needed. For this reason, the MPUDP implementation
could be introduced to any version of the MPTCP kernel, not just v0.90. The udp.c file
was modified to include pointers to functions used in the kernel modules, a branch in the
udp_sendmsg function to allow changing the destination IP address, and a branch in the
udp_recmsg function to allow changing the source IP of incoming messages.

The implementation used for proof of concept testing did not include many of the more
complex elements discussed in Section 4.1. Instead we took a standpoint that the client and
server already discovered each others additional addresses and a MPUDP control channel
was not needed. The use of a path manager was also not required since the addresses for the
connection were already known. This simplification was used to facilitate quicker testing
of the MPUDP protocol to determine its usefulness to the VPN testbed configuration used
in Chapter 3. The Linux kernel Sendmodule contains a simplified scheduler to split traffic
across the two available subflows. The direction of flow was determined using a random
byte generator function available to the kernel to generate a two byte unsigned integer with
maximum value of 65535. The number generated was then tested to see if it was less than
half the maximum (32767), and if it was the destination address was changed to the alternate
path. This scheduler will end up with approximately half the traffic on each path, which
is similar to a round-robin approach. Additionally, this scheduler is only useful for testing
cases with symmetric links. The kernel Receivemodule contains a function to replace the
incoming source address to the address used for establishing the OpenVPN tunnel. This is
necessary since OpenVPNwill discard the packets if they are not associated with the source
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address used during initial setup. The modifications, along with source code information,
to the kernel and additional kernel modules are further discussed in Appendix A.

After making the required modifications to the MPTCP kernel, we conducted performance
testing using symmetric links as done in Chapter 3. Once again the physical testbed of Figure
3.2, system configurations of Table 3.1, and baseline configurations of Table 3.1.3 were
utilized in order to provide similarity between testing. The MPUDP kernel implementation
utilized most closely corresponds to the fullmesh MPTCP test using the default number
of subflows. Thus, in Figure 4.6, we compare the results of MPUDP and MPTCP using
fullmesh to that of a single UDP connection. Tests were repeated 10 times each to achieve
the 95% confidence intervals shown.

(a) No Packet Loss (b) 0.1% Packet Loss

(c) 0.5% Packet Loss (d) 1% Packet Loss

Figure 4.6: Symmetric MPUDP Test Results
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In Figure 4.6a, the MPUDP tunnel does not appear to suffer any significant loss as the
link propagation RTT increases. This results in a significant performance increase over
the MPTCP tunnel and single path UDP tunnel. Interestingly, the UDP and MPUDP
tunnels both seem unaffected by the increased link propagation RTT, while the MPTCP
performance is significantly decreased. This is expected due to the problems discussed
when multiple layers of congestion control are present. It was not expected, however, that
the MPTCP tunnel performance would sometimes significantly drop below the single UDP
tunnel performance. Figure 4.6b illustrates more interesting results. The MPUDP tunnel
continues to outperform the MPTCP tunnel, but approaches the UDP tunnel performance
as the link propagation RTT is increased. These trends continue in Figures 4.6c and 4.6d,
although with diminished significance.

4.3 Chapter Summary
In this chapter we motivated the need for developing a MPUDP protocol to improve the
performance of VPNs. We started by showing that a TCP in UDP tunnel outperformed a
TCP in TCP tunnel due to removing the redundant layer of congestion control. Next we
discussed a design for a MPUDP kernel. The MPUDP kernel can leverage the previous
research conducted to develop and implement the MPTCP kernel. The design principles
utilized for both protocols stressed the need for minimal impact to the single path protocols
while allowing the connections to default to the single path without interaction from the
user. The MPTCP kernel connection process concept was modified to better fit the UDP
connectionless design. Instead of utilizing a three-way handshake to setup the connection,
the MPUDP protocol would implement a control channel in order to acquire client/server
IP addresses as well as other required control information. Additionally the use of path
managers and a scheduler are very similar between the two protocols. The main difference
is that the MPUDP protocol needs to send additional control traffic in order to establish link
conditions to aid the scheduler in determining the best path to use for sending traffic.

The implementation of the MPUDP kernel involved minor additions to the existing UDP
protocol to allow the use of Linux kernel modules. These minor additions were applied
in the udp.c file to have pointers to functions within the Linux kernel modules. The
main functions of the kernel modules consisted of a simplified scheduler to split traffic
approximately evenly across the two available paths and a function to modify the source
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IP of OpenVPN traffic to the IP used to establish the tunnel. The scheduler did not have
the benefit of the control traffic determining link conditions, so a probabilistic method was
used. If the source IP address was not changed, the traffic would not be associated with the
proper source for the tunnel and OpenVPN would not process the packet.

The proof of concept testing showed promising results. The MPUDP tunnel had signifi-
cant performance increases over the MPTCP tunnel for low loss rates. As the loss rates
increased, the performance gain became much less significant. Interestingly, the single path
UDP tunnel also performed better than the MPTCP tunnel for tests using higher RTTs. The
development of the MPUDP protocol to use more sophisticated scheduling will likely result
in the significant performance increases seen in the low loss cases to continue throughout all
the tests. Additionally, an improved scheduler will allow for testing asymmetric link condi-
tions as done in Chapter 3. The path manager of the MPUDP kernel was not implemented,
which prevented the testing of mobility benefits of using MPUDP. It is safe to assume that
once the path manager is implemented, the MPUDP VPN will experience similar mobility
benefits seen when using the MPTCP tunnel.
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CHAPTER 5:
Conclusion

This thesis investigated the use of multipath transport protocols to establish VPN tunnels.
MPTCP is an emerging transport protocol to allow aggregating bandwidth using multiple
TCP connections. VPNs are known to suffer performances losses when using TCP tunnels
and transferring data also using TCP. MPTCP is able to overcome some of the performance
losses seen by these TCP over TCP effects. MPTCP also adds the benefit of mobility to
VPNs, which may be important in the host-to-host or host-to-gateway VPN models. The
same way that MPTCP provides benefits to TCP, we showed that a MPUDP protocol can
enhance a single path UDP tunnel.

The main conclusions of this thesis are as follows:

1. MPUDP should be further developed as a kernel protocol available to the user. Most
Internet traffic uses TCP, which limits the potential benefits of using MPUDP. As
shown in Chapter 4, however, VPNs benefit from using UDP tunnels since TCP
over TCP effects are not present. We showed a MPUDP tunnel may significantly
outperform not only a single UDP tunnel, but also a MPTCP tunnel.

2. MPTCP provides significant benefits and should be more widely adopted. The
performance and mobility benefits shown in Chapter 3 are unable to be achieved if
the VPN server is not MPTCP capable. The limited adoption of MPTCP prevents
users from experiencing the full potential of the multipath protocol.

3. MPTCP and MPUDP should be standard kernel protocols, just like TCP and UDP.
Additionally, MPTCP and MPUDP should be developed in the same kernel since
they do not interfere with one another. Individually each multipath protocol provides
benefits to the user. If a full-multipath kernel was utilized, the benefits to the user are
greatly increased, as follows. First, a full-multipath kernel may be more appealing
than just a partial MPTCP or MPUDP kernel, which can lead to a faster adoption by
the community. Second, wide use of the full-multipath kernel will lead to a quicker
maturation of the MPUDP protocol, which provides additional benefits to the user.
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5.1 Future Work
The majority of future work involves the MPUDP kernel implementation. The proof of
concept testing in Section 4.2 involved a simplified implementation of theMPUDP protocol.
The implementation of the design characteristics of Section 4.1 would lead to the ability to
test additional benefits of using MPUDP VPNs. The features should be implemented in the
following order:

• Develop a multipath control block structure to store connection information. This
control block should store a session key for the connection, available IP addresses for
the client/server and link characteristics necessary for the scheduler.

• Section 4.1.1 discusses a method of establishing a MPUDP connection using a spec-
ified port. The client and server should listen on this port for incoming connections
and control traffic. The first step would be to implement the ability for the client and
server to learn available addresses and store them in the control block.

• Adapt the fullmesh path manager from MPTCP into the MPUDP protocol. It may
not be necessary to implement the ndiffports path manager since its use in MPTCP
is limited. This development will allow testing mobility benefits. The new path
manager, named "redundant," of MPTCP v0.91 may also be useful for MPUDP.

• Section 4.1.3 discusses the scheduler for MPUDP. The first step would be to use
the control channel to determine link characteristics, such as RTT, and develop a
scheduler that utilizes the best link available for traffic. This development will allow
testing asymmetric links.

After the MPUDP kernel is fully implemented, it would be beneficial to conduct kernel
performance testing. The MPTCP kernel was tested in [9] to determine the additional load
added by implementing MPTCP. This same testing should be done with the additions of
the MPUDP protocol to ensure there are minimal effects to the kernel operation.

There is a potential for future work in testing multipath performance with different VPNs.
This thesis utilizedOpenVPNbecause of its open-source nature and ease of implementation,
but there are various other VPN protocols. As discussed in Section 2.1.1, different VPNs
operate at different layers of the OSI model. Testing the multipath protocols of this thesis
with different VPNs may yield different performance results. Possibly some VPNs are built
in a way that allow optimization with multipath protocols, while some may hinder the use of
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multipath protocols. It may also be worthwhile to investigate possible benefits of adjusting
OpenVPN to knowingly use multipath protocols. There may exist possible optimizations
within OpenVPN to take advantage of using multipath tunnels.

Additional future work related to using MPTCP with VPNs is also possible. There are
several additional congestion control algorithms available for use with MPTCP that were
not tested. A detailed study of the performance of each algorithm when integrated with
VPNs could be interesting. Specifically, each congestion control algorithm claims to have
some level of friendliness to single path TCP connections. A detailed study to verify the
friendliness of each algorithm when operating in a VPN would be beneficial, especially
when utilizing additional subflows as done in Section 3.1.5.
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APPENDIX A:
Source Code

This appendix provides links to the source code used while conducting this thesis. Addi-
tionally, a break-down of the scripts utilized to conduct and analyze the performance testing
is provided. This break-down is provided in hopes of easing future research efforts and any
necessary familiarization or validation of the tests conducted. All source code is available
at the following github address: https://github.com/danluke2/mpudp_vpn_thesis.

To conduct the performance testing, we utilized bash scripts to allow for automation of
the tests. Initially, the majority of testing was done manually, which lead to errors due to
forgetting to set certain parameters prior to the test. The bash scripts allowed for reducing
errors in the testing since required settings were made within the script. The bash scripts
also allowed for conducting multiple tests through the use of command line arguments. This
greatly sped up testing, which allowed for more tests to be conducted.

The bash scripts are only part of the performance testing. Once each test was completed,
there were multiple excel files to be analyzed to produce the graphs used. Initially, this
was also done without the aid of scripts, which resulted in a very slow analysis of the data.
Often the analysis of the data would take so long that extra tests were conducted prior to
determining a fault in the testing procedure. For this reason, Python scripts were used to
quickly parse the data and produce the desired graphs. The use of Python scripts allowed
for avoiding unnecessary testing and a deeper analysis. We will now provide a description
of the bash and Python scripts used for the testing.

VPN Client Scripts:

• vpnstart.sh: Allows for starting the client side VPN remotely from the server using
an SSH connection. The script will start a Wireshark capture, initiate the tunnel
connection, and then conduct a test download. The Wireshark capture allows for
verifying the VPN tunnel behaves as expected for the desired test.

• download.sh: Allows for initiating the 10 downloads using wget in quiet mode. This
script could easily be adjusted to perform any number of downloads required. Quiet
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modewas used to prevent unnecessary download statistics being reported to the server
via the SSH connection.

VPN Server Scripts:

• supertest.sh: This was the master script for conducting the symmetric tests of
Sections 3.1.4, 3.1.5, and 4.2. The script allowed for command line arguments to
test MPTCP, MPUDP, TCP, or UDP. The user must also specify the desired TCP
congestion control algorithm to use. This script allowed for ensuring each test had
the same starting parameters and was conducted properly.

• symm_test.sh: Called by the supertest.sh script to conduct the required tests.

• asym_supertest.sh: Similar to the symmetric supertest, but for conducting asym-
metric testing of Section 3.1.6.

• asym_test.sh Called by the asym_supertest.sh script to conduct the required tests.

• subflow_supertest.sh: This is the master script for conducting the subflow tests of
Section 3.1.5.

• sub_test.sh Called by the subflow_supertest.sh script to conduct the required tests.

• tcp_dump.sh: Starts the required Wireshark captures for the test.

Web Server Scripts:

• directory_sym.sh and directory_asym.sh: Creates the required directories auto-
matically for storing the test data. This could be done by the user manually, but
problems result if the user forgets to build all required directories.

• web_tcp_dump.sh: Starts the required Wireshark captures for the test.

Bridge Machine Scripts:

• network_start.sh: This script was run on machine start-up in order to initialize the
required bridges between the interfaces. This script also set the required speed limits
for the interfaces. To run this script at start-up, a configuration file was used.

• tc_qdisc.sh: Show and record the traffic control settings on each interface. Allowed
for verifying the proper settings were in place during each round of testing.
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• tc_param.sh: Used to add, change, or delete traffic control loss rates or delay rates
for each interface.

• bridge_tcp_dump.sh: Starts the required Wireshark captures for the test. These
Wireshark captures were primarily used during initial testing to verify traffic was
using the VPN tunnel as desired.

Python Scripts:

• parser_cubic_balia_mpudp.py: Python script used to parse csv files and produce
bar graphs from Sections 3.1.4, 3.1.5, and 4.2.

• parser_fullmesh_norm.py and parser_ndiff_norm.py : Python script used for
producing the subflow Figures 3.7 and 3.8.

• parser_asym.py: Python script used for producing asymmetric Figure 3.9.

To implement the MPUDP protocol, we chose to use two Linux kernel modules in con-
junction with a modification to the UDP kernel file. This method is similar to the MPTCP
implementation. We used multiple kernel modules in order to simplify the design and
clearly delineate the purpose of each module. We will now provide a description of the C
files used for implementing the MPUDP protocol.

MPUDP C Files:

• udp.c: The udp.c file is found in directory \net\ipv4\. This file was modified
to include branches in the udp_recmsg and udp_sendmsg functions. Code was also
added to export symbols of functions used in the kernel modules.

• MPUDP_send.c: This was the kernel module used to implement the MPUDP send
function called in the udp_sendmsg function.

• MPUDP_recv.c: This was the kernel module used to implement the MPUDP receive
function called in the udp_recmsg function.

• Makefile: Creates the kernel object files from theMPUDP_send.c andMPUDP_recv.c
files. The ".ko" files are the kernel files inserted to allow for the MPUDP functions
to work.

59



THIS PAGE INTENTIONALLY LEFT BLANK

60



List of References

[1] M. Feilner and N. Graf, Beginning Open VPN 2. 0. 9: Build and Integrate Virtual
Private Networks Using OpenVPN. Packt Publishing Ltd, 2009.

[2] O. Titz. Why TCP over TCP is a bad idea. [Online]. Available: http://sites.inka.de/
bigred/devel/tcp-tcp.html. Accessed January 15, 2017.

[3] O. Honda, H. Ohsaki, M. Imase, M. Ishizuka, and J. Murayama, “Understanding
TCP over TCP: Effects of TCP tunneling on end-to-end throughput and latency,”
in Proc. SPIE, vol. 6011, 2005, pp. 60 110H–60 110H. [Online]. Available: http:
//dx.doi.org/10.1117/12.630496

[4] Apple. (2016, August). Use Multipath TCP to create backup connections for iOS.
[Online]. Available: https://support.apple.com/en-us/HT201373

[5] C. Paasch and S. Barre. Multipath TCP in the Linux kernel. [Online]. Available:
http://www.multipath-tcp.org. Accessed January 15, 2017.

[6] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extensions for multipath
operation with multiple addresses,” Internet Requests for Comments, RFC 6824,
January 2013. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6824.txt

[7] O. Bonaventure, “Blog entry: Recommended Multipath TCP configuration,”
2014. [Online]. Available: http://blog.multipath-tcp.org/blog/html/2014/09/16/
recommended_multipath_tcp_configuration.html

[8] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley, “Im-
proving datacenter performance and robustness with Multipath TCP,” in ACM SIG-
COMM Computer Communication Review, vol. 41, no. 4. ACM, 2011, pp. 266–277.

[9] C. Paasch, “Improving Multipath TCP,” Ph.D. dissertation, UCL, London, Nov.
2014. [Online]. Available: http://inl.info.ucl.ac.be/publications/improving-
multipath-tcp

[10] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, implementation
and evaluation of congestion control for Multipath TCP,” in NSDI, vol. 11, 2011, pp.
8–8.

[11] R. Khalili, N. Gast, M. Popovic, and J. yves Le Boudec, “Opportunistic linked-
increases congestion control algorithm for MPTCP,” Internet Engineering Task
Force, Internet-Draft, July 2014. [Online]. Available: https://tools.ietf.org/html/
draft-khalili-mptcp-congestion-control-05

61

http://sites.inka.de/bigred/devel/tcp-tcp.html
http://sites.inka.de/bigred/devel/tcp-tcp.html
http://dx.doi.org/10.1117/12.630496
http://dx.doi.org/10.1117/12.630496
https://support.apple.com/en-us/HT201373
http://www.multipath-tcp.org
http://www.rfc-editor.org/rfc/rfc6824.txt
http://blog.multipath-tcp.org/blog/html/2014/09/16/recommended_multipath_tcp_configuration.html
http://blog.multipath-tcp.org/blog/html/2014/09/16/recommended_multipath_tcp_configuration.html
http://inl.info.ucl.ac.be/publications/improving-multipath-tcp
http://inl.info.ucl.ac.be/publications/improving-multipath-tcp
https://tools.ietf.org/html/draft-khalili-mptcp-congestion-control-05
https://tools.ietf.org/html/draft-khalili-mptcp-congestion-control-05


[12] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath TCP: Analysis, design, and
implementation,” IEEE/ACM Transactions on Networking (ToN), vol. 24, no. 1, pp.
596–609, 2016.

[13] A. Walid, Q. Peng, S. H. Low, and J. Hwang, “Balanced linked adaptation con-
gestion control algorithm for MPTCP,” Internet Engineering Task Force, Internet-
Draft, Jan. 2016. [Online]. Available: https://tools.ietf.org/html/draft-walid-mptcp-
congestion-control-04

[14] E. F. Crist and J. J. Keijser,Mastering OpenVPN. Packt Publishing Ltd, 2015.

[15] H. Foster, “Why does MPTCP have to make things so complicated?: Cross-path
NIDS evasion and countermeasures,” M.S. thesis, Naval Postgraduate School, 2016.
[Online]. Available: http://calhoun.nps.edu/handle/10945/50546

[16] L. Boccassi, M. M. Fayed, and M. K. Marina, “Binder: A system to aggregate mul-
tiple Internet gateways in community networks,” in Proceedings of the 2013 ACM
MobiCom Workshop on Lowest Cost Denominator Networking for Universal Access.
ACM, 2013, pp. 3–8.

[17] C. Raiciu, D. Niculescu, M. Bagnulo, and M. J. Handley, “Opportunistic mobility
with Multipath TCP,” in Proceedings of the Sixth International Workshop on Mo-
biArch. ACM, 2011, pp. 7–12.

[18] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure, “Exploring mo-
bile/wifi handover with Multipath TCP,” in Proceedings of the 2012 ACM SIG-
COMM Workshop on Cellular Networks: Operations, Challenges, and Future De-
sign. ACM, 2012, pp. 31–36.

[19] M. Boutier and J. Chroboczek. User-space Multipath UDP in MOSH. [Online].
Available: http://arxiv.org/abs/1502.02402. Accessed January 15, 2017.

[20] J. F. Kurose, Computer Networking: A Top-Down Approach Featuring the Internet,
6/E. Pearson Education, 2012.

[21] G. R. Wright and W. R. Stevens, TCP/IP Illustrated. Addison-Wesley Professional,
1995, vol. 2.

62

https://tools.ietf.org/html/draft-walid-mptcp-congestion-control-04
https://tools.ietf.org/html/draft-walid-mptcp-congestion-control-04
http://calhoun.nps.edu/handle/10945/50546
http://arxiv.org/abs/1502.02402


Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

63


	Introduction
	Problem Statement
	Research Questions
	Thesis Organization

	Background
	VPNs
	MPTCP
	Related Work

	Performance Evaluation of MPTCP-VPN Integration 
	Performance Testing
	Mobility Testing
	Chapter Summary

	MPUDP Design and Implementation
	Designing MPUDP
	Implementation and Testing of MPUDP
	Chapter Summary

	Conclusion
	Future Work

	Source Code
	List of References
	Initial Distribution List

